Tumor necrosis factor α decreases nitric oxide synthase type 3 expression primarily via Rho/Rho kinase in the thick ascending limb.
نویسندگان
چکیده
Inappropriate Na(+) reabsorption by thick ascending limbs (THALs) induces hypertension. NO produced by NO synthase type 3 (NOS3) inhibits NaCl reabsorption by THALs. Tumor necrosis factor α (TNF-α) decreases NOS3 expression in endothelial cells and contributes to increases in blood pressure. However, the effects of TNF-α on THAL NOS3 and the signaling cascade are unknown. TNF-α activates several signaling pathways, including Rho/Rho kinase (ROCK), which is known to reduce NOS3 expression in endothelial cells. Therefore, we hypothesized that TNF-α decreases NOS3 expression via Rho/ROCK in rat THAL primary cultures. THAL cells were incubated with either vehicle or 1 nmol/L of TNF-α for 24 hours, and NOS3 expression was measured by Western blot. TNF-α decreased NOS3 expression by 51 ± 6% (P<0.002) and blunted stimulus-induced NO production. A 10-minute treatment with TNF-α stimulated RhoA activity by 60 ± 23% (P<0.04). Inhibition of Rho GTPase with 0.05 μg/mL of C3 exoenzyme blocked TNF-α-induced reductions in NOS3 expression by 30 ± 8% (P<0.02). Inhibition of ROCK with 10 μmol/L of H-1152 blocked TNF-α-induced decreases in NOS3 expression by 66 ± 15% (P<0.001). Simultaneous inhibition of Rho and ROCK had no additive effect. Myosin light chain kinase, NO, protein kinase C, mitogen-activated kinase kinase, c-Jun amino terminal kinases, and Rac-1 were also not involved in TNF-α-induced decreases in NOS3 expression. We conclude that TNF-α decreases NOS3 expression primarily via Rho/ROCK in rat THALs. These data suggest that some of the beneficial effects of ROCK inhibitors in hypertension could be attributed to the mitigation of TNF-α-induced reduction in NOS3 expression.
منابع مشابه
Kidney Angiotensin II Decreases Nitric Oxide Synthase 3 Expression via Nitric Oxide and Superoxide in the Thick Ascending Limb
NO produced by NO synthase type 3 (NOS3) in medullary thick ascending limbs (mTHALs) inhibits Cl reabsorption. Acutely, angiotensin II stimulates thick ascending limb NO production. In endothelial cells, NO inhibits NOS3 expression. Therefore, we hypothesized that angiotensin II decreases NOS3 expression via NO in mTHALs. After 24 hours, 10 and 100 nmol/L of angiotensin II decreased NOS3 expres...
متن کاملAngiotensin II decreases nitric oxide synthase 3 expression via nitric oxide and superoxide in the thick ascending limb.
NO produced by NO synthase type 3 (NOS3) in medullary thick ascending limbs (mTHALs) inhibits Cl(-) reabsorption. Acutely, angiotensin II stimulates thick ascending limb NO production. In endothelial cells, NO inhibits NOS3 expression. Therefore, we hypothesized that angiotensin II decreases NOS3 expression via NO in mTHALs. After 24 hours, 10 and 100 nmol/L of angiotensin II decreased NOS3 exp...
متن کاملResveratrol Increases Nitric Oxide Production in the Rat Thick Ascending Limb via Ca2+/Calmodulin
The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent de...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 59 6 شماره
صفحات -
تاریخ انتشار 2012